This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssprsseq | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } C_ { C , D } <-> { A , B } = { C , D } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssprss | |- ( ( A e. V /\ B e. W ) -> ( { A , B } C_ { C , D } <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } C_ { C , D } <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |
| 3 | eqneqall | |- ( A = B -> ( A =/= B -> { A , B } = { C , D } ) ) |
|
| 4 | eqtr3 | |- ( ( A = C /\ B = C ) -> A = B ) |
|
| 5 | 3 4 | syl11 | |- ( A =/= B -> ( ( A = C /\ B = C ) -> { A , B } = { C , D } ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( A = C /\ B = C ) -> { A , B } = { C , D } ) ) |
| 7 | 6 | com12 | |- ( ( A = C /\ B = C ) -> ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } = { C , D } ) ) |
| 8 | preq12 | |- ( ( A = D /\ B = C ) -> { A , B } = { D , C } ) |
|
| 9 | prcom | |- { D , C } = { C , D } |
|
| 10 | 8 9 | eqtrdi | |- ( ( A = D /\ B = C ) -> { A , B } = { C , D } ) |
| 11 | 10 | a1d | |- ( ( A = D /\ B = C ) -> ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } = { C , D } ) ) |
| 12 | preq12 | |- ( ( A = C /\ B = D ) -> { A , B } = { C , D } ) |
|
| 13 | 12 | a1d | |- ( ( A = C /\ B = D ) -> ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } = { C , D } ) ) |
| 14 | eqtr3 | |- ( ( A = D /\ B = D ) -> A = B ) |
|
| 15 | 3 14 | syl11 | |- ( A =/= B -> ( ( A = D /\ B = D ) -> { A , B } = { C , D } ) ) |
| 16 | 15 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( A = D /\ B = D ) -> { A , B } = { C , D } ) ) |
| 17 | 16 | com12 | |- ( ( A = D /\ B = D ) -> ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } = { C , D } ) ) |
| 18 | 7 11 13 17 | ccase | |- ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) -> ( ( A e. V /\ B e. W /\ A =/= B ) -> { A , B } = { C , D } ) ) |
| 19 | 18 | com12 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) -> { A , B } = { C , D } ) ) |
| 20 | 2 19 | sylbid | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } C_ { C , D } -> { A , B } = { C , D } ) ) |
| 21 | eqimss | |- ( { A , B } = { C , D } -> { A , B } C_ { C , D } ) |
|
| 22 | 20 21 | impbid1 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } C_ { C , D } <-> { A , B } = { C , D } ) ) |