This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspred | |- ( ( B C_ A /\ Pred ( R , A , X ) C_ B ) -> Pred ( R , A , X ) = Pred ( R , B , X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqin2 | |- ( B C_ A <-> ( A i^i B ) = B ) |
|
| 2 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 3 | 2 | sseq1i | |- ( Pred ( R , A , X ) C_ B <-> ( A i^i ( `' R " { X } ) ) C_ B ) |
| 4 | dfss2 | |- ( ( A i^i ( `' R " { X } ) ) C_ B <-> ( ( A i^i ( `' R " { X } ) ) i^i B ) = ( A i^i ( `' R " { X } ) ) ) |
|
| 5 | in32 | |- ( ( A i^i ( `' R " { X } ) ) i^i B ) = ( ( A i^i B ) i^i ( `' R " { X } ) ) |
|
| 6 | 5 | eqeq1i | |- ( ( ( A i^i ( `' R " { X } ) ) i^i B ) = ( A i^i ( `' R " { X } ) ) <-> ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) |
| 7 | 3 4 6 | 3bitri | |- ( Pred ( R , A , X ) C_ B <-> ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) |
| 8 | ineq1 | |- ( ( A i^i B ) = B -> ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( B i^i ( `' R " { X } ) ) ) |
|
| 9 | 8 | eqeq1d | |- ( ( A i^i B ) = B -> ( ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) <-> ( B i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) ) |
| 10 | 9 | biimpa | |- ( ( ( A i^i B ) = B /\ ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) -> ( B i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) |
| 11 | df-pred | |- Pred ( R , B , X ) = ( B i^i ( `' R " { X } ) ) |
|
| 12 | 10 11 2 | 3eqtr4g | |- ( ( ( A i^i B ) = B /\ ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) -> Pred ( R , B , X ) = Pred ( R , A , X ) ) |
| 13 | 12 | eqcomd | |- ( ( ( A i^i B ) = B /\ ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) -> Pred ( R , A , X ) = Pred ( R , B , X ) ) |
| 14 | 1 7 13 | syl2anb | |- ( ( B C_ A /\ Pred ( R , A , X ) C_ B ) -> Pred ( R , A , X ) = Pred ( R , B , X ) ) |