This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015) (Proof shortened by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omsinds.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| omsinds.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | ||
| omsinds.3 | ⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | ||
| Assertion | omsinds | ⊢ ( 𝐴 ∈ ω → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsinds.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | omsinds.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | omsinds.3 | ⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | |
| 4 | omsson | ⊢ ω ⊆ On | |
| 5 | epweon | ⊢ E We On | |
| 6 | wess | ⊢ ( ω ⊆ On → ( E We On → E We ω ) ) | |
| 7 | 4 5 6 | mp2 | ⊢ E We ω |
| 8 | epse | ⊢ E Se ω | |
| 9 | trom | ⊢ Tr ω | |
| 10 | trpred | ⊢ ( ( Tr ω ∧ 𝑥 ∈ ω ) → Pred ( E , ω , 𝑥 ) = 𝑥 ) | |
| 11 | 9 10 | mpan | ⊢ ( 𝑥 ∈ ω → Pred ( E , ω , 𝑥 ) = 𝑥 ) |
| 12 | 11 | raleqdv | ⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓 ↔ ∀ 𝑦 ∈ 𝑥 𝜓 ) ) |
| 13 | 12 3 | sylbid | ⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ Pred ( E , ω , 𝑥 ) 𝜓 → 𝜑 ) ) |
| 14 | 7 8 1 2 13 | wfis3 | ⊢ ( 𝐴 ∈ ω → 𝜒 ) |