This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sshaus and similar theorems. If the topological property A is preserved under injective preimages, then a topology finer than one with property A also has property A . (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| sshauslem.2 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | ||
| sshauslem.3 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋 ) : 𝑋 –1-1→ 𝑋 ∧ ( I ↾ 𝑋 ) ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ 𝐴 ) | ||
| Assertion | sshauslem | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐾 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | sshauslem.2 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | |
| 3 | sshauslem.3 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ ( I ↾ 𝑋 ) : 𝑋 –1-1→ 𝑋 ∧ ( I ↾ 𝑋 ) ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ 𝐴 ) | |
| 4 | simp1 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐽 ∈ 𝐴 ) | |
| 5 | f1oi | ⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 | |
| 6 | f1of1 | ⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 –1-1→ 𝑋 ) | |
| 7 | 5 6 | mp1i | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( I ↾ 𝑋 ) : 𝑋 –1-1→ 𝑋 ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐽 ⊆ 𝐾 ) | |
| 9 | simp2 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 10 | 2 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐽 ∈ Top ) |
| 11 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 12 | 10 11 | sylib | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 13 | ssidcn | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐾 Cn 𝐽 ) ↔ 𝐽 ⊆ 𝐾 ) ) | |
| 14 | 9 12 13 | syl2anc | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝐾 Cn 𝐽 ) ↔ 𝐽 ⊆ 𝐾 ) ) |
| 15 | 8 14 | mpbird | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( I ↾ 𝑋 ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 16 | 4 7 15 3 | syl3anc | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐾 ∈ 𝐴 ) |