This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology finer than a T_0 topology is T_0. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | sst0 | ⊢ ( ( 𝐽 ∈ Kol2 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐾 ∈ Kol2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | t0top | ⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top ) | |
| 3 | cnt0 | ⊢ ( ( 𝐽 ∈ Kol2 ∧ ( I ↾ 𝑋 ) : 𝑋 –1-1→ 𝑋 ∧ ( I ↾ 𝑋 ) ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ Kol2 ) | |
| 4 | 1 2 3 | sshauslem | ⊢ ( ( 𝐽 ∈ Kol2 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐾 ∈ Kol2 ) |