This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sshaus and similar theorems. If the topological property A is preserved under injective preimages, then a topology finer than one with property A also has property A . (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | t1sep.1 | |- X = U. J |
|
| sshauslem.2 | |- ( J e. A -> J e. Top ) |
||
| sshauslem.3 | |- ( ( J e. A /\ ( _I |` X ) : X -1-1-> X /\ ( _I |` X ) e. ( K Cn J ) ) -> K e. A ) |
||
| Assertion | sshauslem | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> K e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | |- X = U. J |
|
| 2 | sshauslem.2 | |- ( J e. A -> J e. Top ) |
|
| 3 | sshauslem.3 | |- ( ( J e. A /\ ( _I |` X ) : X -1-1-> X /\ ( _I |` X ) e. ( K Cn J ) ) -> K e. A ) |
|
| 4 | simp1 | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> J e. A ) |
|
| 5 | f1oi | |- ( _I |` X ) : X -1-1-onto-> X |
|
| 6 | f1of1 | |- ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X -1-1-> X ) |
|
| 7 | 5 6 | mp1i | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> ( _I |` X ) : X -1-1-> X ) |
| 8 | simp3 | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> J C_ K ) |
|
| 9 | simp2 | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> K e. ( TopOn ` X ) ) |
|
| 10 | 2 | 3ad2ant1 | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> J e. Top ) |
| 11 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 12 | 10 11 | sylib | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> J e. ( TopOn ` X ) ) |
| 13 | ssidcn | |- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` X ) ) -> ( ( _I |` X ) e. ( K Cn J ) <-> J C_ K ) ) |
|
| 14 | 9 12 13 | syl2anc | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> ( ( _I |` X ) e. ( K Cn J ) <-> J C_ K ) ) |
| 15 | 8 14 | mpbird | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> ( _I |` X ) e. ( K Cn J ) ) |
| 16 | 4 7 15 3 | syl3anc | |- ( ( J e. A /\ K e. ( TopOn ` X ) /\ J C_ K ) -> K e. A ) |