This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of sseli illustrating the use of the weak deduction theorem to prove it from the inference sselii . (Contributed by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sseliALT.1 | ⊢ 𝐴 ⊆ 𝐵 | |
| Assertion | sseliALT | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseliALT.1 | ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | biidd | ⊢ ( 𝐴 = if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) → ( 𝐶 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵 ) ) | |
| 3 | eleq2 | ⊢ ( 𝐵 = if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) → ( 𝐶 ∈ 𝐵 ↔ 𝐶 ∈ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ) ) | |
| 4 | eleq1 | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) → ( 𝐶 ∈ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ↔ if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) ∈ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ) ) | |
| 5 | sseq1 | ⊢ ( 𝐴 = if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) → ( 𝐴 ⊆ 𝐵 ↔ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ 𝐵 ) ) | |
| 6 | sseq2 | ⊢ ( 𝐵 = if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) → ( if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ 𝐵 ↔ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ) ) | |
| 7 | biidd | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) → ( if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ↔ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ) ) | |
| 8 | sseq1 | ⊢ ( { ∅ } = if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) → ( { ∅ } ⊆ { ∅ } ↔ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ { ∅ } ) ) | |
| 9 | sseq2 | ⊢ ( { ∅ } = if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) → ( if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ { ∅ } ↔ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ) ) | |
| 10 | biidd | ⊢ ( ∅ = if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) → ( if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ↔ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) ) ) | |
| 11 | ssid | ⊢ { ∅ } ⊆ { ∅ } | |
| 12 | 5 6 7 8 9 10 1 11 | keephyp3v | ⊢ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ⊆ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) |
| 13 | eleq2 | ⊢ ( 𝐴 = if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) → ( 𝐶 ∈ 𝐴 ↔ 𝐶 ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ) ) | |
| 14 | biidd | ⊢ ( 𝐵 = if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) → ( 𝐶 ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ↔ 𝐶 ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ) ) | |
| 15 | eleq1 | ⊢ ( 𝐶 = if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) → ( 𝐶 ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ↔ if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ) ) | |
| 16 | eleq2 | ⊢ ( { ∅ } = if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) → ( ∅ ∈ { ∅ } ↔ ∅ ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ) ) | |
| 17 | biidd | ⊢ ( { ∅ } = if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) → ( ∅ ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ↔ ∅ ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ) ) | |
| 18 | eleq1 | ⊢ ( ∅ = if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) → ( ∅ ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ↔ if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) ) ) | |
| 19 | 0ex | ⊢ ∅ ∈ V | |
| 20 | 19 | snid | ⊢ ∅ ∈ { ∅ } |
| 21 | 13 14 15 16 17 18 20 | elimhyp3v | ⊢ if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) ∈ if ( 𝐶 ∈ 𝐴 , 𝐴 , { ∅ } ) |
| 22 | 12 21 | sselii | ⊢ if ( 𝐶 ∈ 𝐴 , 𝐶 , ∅ ) ∈ if ( 𝐶 ∈ 𝐴 , 𝐵 , { ∅ } ) |
| 23 | 2 3 4 22 | dedth3v | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) |