This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005) (Revised by NM, 17-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbexg | ⊢ ( ∀ 𝑥 𝐵 ∈ 𝑊 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } | |
| 2 | abid2 | ⊢ { 𝑦 ∣ 𝑦 ∈ 𝐵 } = 𝐵 | |
| 3 | elex | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ V ) | |
| 4 | 2 3 | eqeltrid | ⊢ ( 𝐵 ∈ 𝑊 → { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 𝐵 ∈ 𝑊 → ∀ 𝑥 { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) |
| 6 | spsbc | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V → [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) ) | |
| 7 | 5 6 | syl5 | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 𝐵 ∈ 𝑊 → [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ) ) |
| 8 | nfcv | ⊢ Ⅎ 𝑥 V | |
| 9 | 8 | sbcabel | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝑦 ∈ 𝐵 } ∈ V ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ V ) ) |
| 10 | 7 9 | sylibd | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 𝐵 ∈ 𝑊 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ V ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 𝐵 ∈ 𝑊 ) → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ V ) |
| 12 | 1 11 | eqeltrid | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 𝐵 ∈ 𝑊 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 13 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | 13 14 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 16 | 15 | adantr | ⊢ ( ( ¬ 𝐴 ∈ V ∧ ∀ 𝑥 𝐵 ∈ 𝑊 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |
| 17 | 12 16 | pm2.61ian | ⊢ ( ∀ 𝑥 𝐵 ∈ 𝑊 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ V ) |