This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of sseli illustrating the use of the weak deduction theorem to prove it from the inference sselii . (Contributed by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sseliALT.1 | |- A C_ B |
|
| Assertion | sseliALT | |- ( C e. A -> C e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseliALT.1 | |- A C_ B |
|
| 2 | biidd | |- ( A = if ( C e. A , A , { (/) } ) -> ( C e. B <-> C e. B ) ) |
|
| 3 | eleq2 | |- ( B = if ( C e. A , B , { (/) } ) -> ( C e. B <-> C e. if ( C e. A , B , { (/) } ) ) ) |
|
| 4 | eleq1 | |- ( C = if ( C e. A , C , (/) ) -> ( C e. if ( C e. A , B , { (/) } ) <-> if ( C e. A , C , (/) ) e. if ( C e. A , B , { (/) } ) ) ) |
|
| 5 | sseq1 | |- ( A = if ( C e. A , A , { (/) } ) -> ( A C_ B <-> if ( C e. A , A , { (/) } ) C_ B ) ) |
|
| 6 | sseq2 | |- ( B = if ( C e. A , B , { (/) } ) -> ( if ( C e. A , A , { (/) } ) C_ B <-> if ( C e. A , A , { (/) } ) C_ if ( C e. A , B , { (/) } ) ) ) |
|
| 7 | biidd | |- ( C = if ( C e. A , C , (/) ) -> ( if ( C e. A , A , { (/) } ) C_ if ( C e. A , B , { (/) } ) <-> if ( C e. A , A , { (/) } ) C_ if ( C e. A , B , { (/) } ) ) ) |
|
| 8 | sseq1 | |- ( { (/) } = if ( C e. A , A , { (/) } ) -> ( { (/) } C_ { (/) } <-> if ( C e. A , A , { (/) } ) C_ { (/) } ) ) |
|
| 9 | sseq2 | |- ( { (/) } = if ( C e. A , B , { (/) } ) -> ( if ( C e. A , A , { (/) } ) C_ { (/) } <-> if ( C e. A , A , { (/) } ) C_ if ( C e. A , B , { (/) } ) ) ) |
|
| 10 | biidd | |- ( (/) = if ( C e. A , C , (/) ) -> ( if ( C e. A , A , { (/) } ) C_ if ( C e. A , B , { (/) } ) <-> if ( C e. A , A , { (/) } ) C_ if ( C e. A , B , { (/) } ) ) ) |
|
| 11 | ssid | |- { (/) } C_ { (/) } |
|
| 12 | 5 6 7 8 9 10 1 11 | keephyp3v | |- if ( C e. A , A , { (/) } ) C_ if ( C e. A , B , { (/) } ) |
| 13 | eleq2 | |- ( A = if ( C e. A , A , { (/) } ) -> ( C e. A <-> C e. if ( C e. A , A , { (/) } ) ) ) |
|
| 14 | biidd | |- ( B = if ( C e. A , B , { (/) } ) -> ( C e. if ( C e. A , A , { (/) } ) <-> C e. if ( C e. A , A , { (/) } ) ) ) |
|
| 15 | eleq1 | |- ( C = if ( C e. A , C , (/) ) -> ( C e. if ( C e. A , A , { (/) } ) <-> if ( C e. A , C , (/) ) e. if ( C e. A , A , { (/) } ) ) ) |
|
| 16 | eleq2 | |- ( { (/) } = if ( C e. A , A , { (/) } ) -> ( (/) e. { (/) } <-> (/) e. if ( C e. A , A , { (/) } ) ) ) |
|
| 17 | biidd | |- ( { (/) } = if ( C e. A , B , { (/) } ) -> ( (/) e. if ( C e. A , A , { (/) } ) <-> (/) e. if ( C e. A , A , { (/) } ) ) ) |
|
| 18 | eleq1 | |- ( (/) = if ( C e. A , C , (/) ) -> ( (/) e. if ( C e. A , A , { (/) } ) <-> if ( C e. A , C , (/) ) e. if ( C e. A , A , { (/) } ) ) ) |
|
| 19 | 0ex | |- (/) e. _V |
|
| 20 | 19 | snid | |- (/) e. { (/) } |
| 21 | 13 14 15 16 17 18 20 | elimhyp3v | |- if ( C e. A , C , (/) ) e. if ( C e. A , A , { (/) } ) |
| 22 | 12 21 | sselii | |- if ( C e. A , C , (/) ) e. if ( C e. A , B , { (/) } ) |
| 23 | 2 3 4 22 | dedth3v | |- ( C e. A -> C e. B ) |