This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Keep a hypothesis containing 3 class variables. (Contributed by NM, 27-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | keephyp3v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜌 ↔ 𝜒 ) ) | |
| keephyp3v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
| keephyp3v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃 ↔ 𝜏 ) ) | ||
| keephyp3v.4 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂 ↔ 𝜁 ) ) | ||
| keephyp3v.5 | ⊢ ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁 ↔ 𝜎 ) ) | ||
| keephyp3v.6 | ⊢ ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎 ↔ 𝜏 ) ) | ||
| keephyp3v.7 | ⊢ 𝜌 | ||
| keephyp3v.8 | ⊢ 𝜂 | ||
| Assertion | keephyp3v | ⊢ 𝜏 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | keephyp3v.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜌 ↔ 𝜒 ) ) | |
| 2 | keephyp3v.2 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜒 ↔ 𝜃 ) ) | |
| 3 | keephyp3v.3 | ⊢ ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜃 ↔ 𝜏 ) ) | |
| 4 | keephyp3v.4 | ⊢ ( 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜂 ↔ 𝜁 ) ) | |
| 5 | keephyp3v.5 | ⊢ ( 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) → ( 𝜁 ↔ 𝜎 ) ) | |
| 6 | keephyp3v.6 | ⊢ ( 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) → ( 𝜎 ↔ 𝜏 ) ) | |
| 7 | keephyp3v.7 | ⊢ 𝜌 | |
| 8 | keephyp3v.8 | ⊢ 𝜂 | |
| 9 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐴 ) | |
| 10 | 9 | eqcomd | ⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) ) |
| 11 | 10 1 | syl | ⊢ ( 𝜑 → ( 𝜌 ↔ 𝜒 ) ) |
| 12 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝐵 ) | |
| 13 | 12 | eqcomd | ⊢ ( 𝜑 → 𝐵 = if ( 𝜑 , 𝐵 , 𝑅 ) ) |
| 14 | 13 2 | syl | ⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
| 15 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝐶 ) | |
| 16 | 15 | eqcomd | ⊢ ( 𝜑 → 𝐶 = if ( 𝜑 , 𝐶 , 𝑆 ) ) |
| 17 | 16 3 | syl | ⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
| 18 | 11 14 17 | 3bitrd | ⊢ ( 𝜑 → ( 𝜌 ↔ 𝜏 ) ) |
| 19 | 7 18 | mpbii | ⊢ ( 𝜑 → 𝜏 ) |
| 20 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐷 ) = 𝐷 ) | |
| 21 | 20 | eqcomd | ⊢ ( ¬ 𝜑 → 𝐷 = if ( 𝜑 , 𝐴 , 𝐷 ) ) |
| 22 | 21 4 | syl | ⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜁 ) ) |
| 23 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝑅 ) = 𝑅 ) | |
| 24 | 23 | eqcomd | ⊢ ( ¬ 𝜑 → 𝑅 = if ( 𝜑 , 𝐵 , 𝑅 ) ) |
| 25 | 24 5 | syl | ⊢ ( ¬ 𝜑 → ( 𝜁 ↔ 𝜎 ) ) |
| 26 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝑆 ) = 𝑆 ) | |
| 27 | 26 | eqcomd | ⊢ ( ¬ 𝜑 → 𝑆 = if ( 𝜑 , 𝐶 , 𝑆 ) ) |
| 28 | 27 6 | syl | ⊢ ( ¬ 𝜑 → ( 𝜎 ↔ 𝜏 ) ) |
| 29 | 22 25 28 | 3bitrd | ⊢ ( ¬ 𝜑 → ( 𝜂 ↔ 𝜏 ) ) |
| 30 | 8 29 | mpbii | ⊢ ( ¬ 𝜑 → 𝜏 ) |
| 31 | 19 30 | pm2.61i | ⊢ 𝜏 |