This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscres | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ⊆cat 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝑆 ∩ 𝑇 ) ⊆ 𝑆 | |
| 2 | simpl | ⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ) | |
| 3 | 2 | elin2d | ⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑥 ∈ 𝑇 ) |
| 4 | simpr | ⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) | |
| 5 | 4 | elin2d | ⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑦 ∈ 𝑇 ) |
| 6 | 3 5 | ovresd | ⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 7 | eqimss | ⊢ ( ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) → ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) |
| 9 | 8 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∀ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) |
| 10 | 1 9 | pm3.2i | ⊢ ( ( 𝑆 ∩ 𝑇 ) ⊆ 𝑆 ∧ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∀ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) |
| 11 | simpl | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) | |
| 12 | inss1 | ⊢ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ⊆ ( 𝑆 × 𝑆 ) | |
| 13 | fnssres | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ⊆ ( 𝑆 × 𝑆 ) ) → ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) Fn ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) Fn ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) |
| 15 | resres | ⊢ ( ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ↾ ( 𝑇 × 𝑇 ) ) = ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) | |
| 16 | fnresdm | ⊢ ( 𝐻 Fn ( 𝑆 × 𝑆 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) |
| 18 | 17 | reseq1d | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ↾ ( 𝑇 × 𝑇 ) ) = ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ) |
| 19 | 15 18 | eqtr3id | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) = ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ) |
| 20 | inxp | ⊢ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) = ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) | |
| 21 | 20 | a1i | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) = ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) ) |
| 22 | 19 21 | fneq12d | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) Fn ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ↔ ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) Fn ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) ) ) |
| 23 | 14 22 | mpbid | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) Fn ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) ) |
| 24 | simpr | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝑆 ∈ 𝑉 ) | |
| 25 | 23 11 24 | isssc | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ⊆cat 𝐻 ↔ ( ( 𝑆 ∩ 𝑇 ) ⊆ 𝑆 ∧ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∀ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) ) ) |
| 26 | 10 25 | mpbiri | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ⊆cat 𝐻 ) |