This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscres | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( T X. T ) ) C_cat H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | |- ( S i^i T ) C_ S |
|
| 2 | simpl | |- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> x e. ( S i^i T ) ) |
|
| 3 | 2 | elin2d | |- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> x e. T ) |
| 4 | simpr | |- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> y e. ( S i^i T ) ) |
|
| 5 | 4 | elin2d | |- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> y e. T ) |
| 6 | 3 5 | ovresd | |- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> ( x ( H |` ( T X. T ) ) y ) = ( x H y ) ) |
| 7 | eqimss | |- ( ( x ( H |` ( T X. T ) ) y ) = ( x H y ) -> ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) |
|
| 8 | 6 7 | syl | |- ( ( x e. ( S i^i T ) /\ y e. ( S i^i T ) ) -> ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) |
| 9 | 8 | rgen2 | |- A. x e. ( S i^i T ) A. y e. ( S i^i T ) ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) |
| 10 | 1 9 | pm3.2i | |- ( ( S i^i T ) C_ S /\ A. x e. ( S i^i T ) A. y e. ( S i^i T ) ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) |
| 11 | simpl | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> H Fn ( S X. S ) ) |
|
| 12 | inss1 | |- ( ( S X. S ) i^i ( T X. T ) ) C_ ( S X. S ) |
|
| 13 | fnssres | |- ( ( H Fn ( S X. S ) /\ ( ( S X. S ) i^i ( T X. T ) ) C_ ( S X. S ) ) -> ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) Fn ( ( S X. S ) i^i ( T X. T ) ) ) |
|
| 14 | 11 12 13 | sylancl | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) Fn ( ( S X. S ) i^i ( T X. T ) ) ) |
| 15 | resres | |- ( ( H |` ( S X. S ) ) |` ( T X. T ) ) = ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) |
|
| 16 | fnresdm | |- ( H Fn ( S X. S ) -> ( H |` ( S X. S ) ) = H ) |
|
| 17 | 16 | adantr | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( S X. S ) ) = H ) |
| 18 | 17 | reseq1d | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( H |` ( S X. S ) ) |` ( T X. T ) ) = ( H |` ( T X. T ) ) ) |
| 19 | 15 18 | eqtr3id | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) = ( H |` ( T X. T ) ) ) |
| 20 | inxp | |- ( ( S X. S ) i^i ( T X. T ) ) = ( ( S i^i T ) X. ( S i^i T ) ) |
|
| 21 | 20 | a1i | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( S X. S ) i^i ( T X. T ) ) = ( ( S i^i T ) X. ( S i^i T ) ) ) |
| 22 | 19 21 | fneq12d | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( H |` ( ( S X. S ) i^i ( T X. T ) ) ) Fn ( ( S X. S ) i^i ( T X. T ) ) <-> ( H |` ( T X. T ) ) Fn ( ( S i^i T ) X. ( S i^i T ) ) ) ) |
| 23 | 14 22 | mpbid | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( T X. T ) ) Fn ( ( S i^i T ) X. ( S i^i T ) ) ) |
| 24 | simpr | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> S e. V ) |
|
| 25 | 23 11 24 | isssc | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( ( H |` ( T X. T ) ) C_cat H <-> ( ( S i^i T ) C_ S /\ A. x e. ( S i^i T ) A. y e. ( S i^i T ) ( x ( H |` ( T X. T ) ) y ) C_ ( x H y ) ) ) ) |
| 26 | 10 25 | mpbiri | |- ( ( H Fn ( S X. S ) /\ S e. V ) -> ( H |` ( T X. T ) ) C_cat H ) |