This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss . (Contributed by RP, 3-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscon34b | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscon | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) | |
| 2 | sscon | ⊢ ( ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) → ( 𝐶 ∖ ( 𝐶 ∖ 𝐴 ) ) ⊆ ( 𝐶 ∖ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 3 | dfss4 | ⊢ ( 𝐴 ⊆ 𝐶 ↔ ( 𝐶 ∖ ( 𝐶 ∖ 𝐴 ) ) = 𝐴 ) | |
| 4 | 3 | biimpi | ⊢ ( 𝐴 ⊆ 𝐶 → ( 𝐶 ∖ ( 𝐶 ∖ 𝐴 ) ) = 𝐴 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐶 ∖ ( 𝐶 ∖ 𝐴 ) ) = 𝐴 ) |
| 6 | dfss4 | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐶 ∖ ( 𝐶 ∖ 𝐵 ) ) = 𝐵 ) | |
| 7 | 6 | biimpi | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝐶 ∖ ( 𝐶 ∖ 𝐵 ) ) = 𝐵 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐶 ∖ ( 𝐶 ∖ 𝐵 ) ) = 𝐵 ) |
| 9 | 5 8 | sseq12d | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐶 ∖ ( 𝐶 ∖ 𝐴 ) ) ⊆ ( 𝐶 ∖ ( 𝐶 ∖ 𝐵 ) ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 10 | 2 9 | imbitrid | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) → 𝐴 ⊆ 𝐵 ) ) |
| 11 | 1 10 | impbid2 | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |