This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq . (Contributed by RP, 10-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rcompleq | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 = 𝐵 ↔ ( 𝐶 ∖ 𝐴 ) = ( 𝐶 ∖ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ) | |
| 2 | sscon34b | ⊢ ( ( 𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
| 4 | sscon34b | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ↔ ( ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) ) |
| 6 | 1 5 | bitrid | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) ) |
| 7 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 8 | eqss | ⊢ ( ( 𝐶 ∖ 𝐴 ) = ( 𝐶 ∖ 𝐵 ) ↔ ( ( 𝐶 ∖ 𝐴 ) ⊆ ( 𝐶 ∖ 𝐵 ) ∧ ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) ) | |
| 9 | 6 7 8 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 = 𝐵 ↔ ( 𝐶 ∖ 𝐴 ) = ( 𝐶 ∖ 𝐵 ) ) ) |