This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss . (Contributed by RP, 3-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscon34b | |- ( ( A C_ C /\ B C_ C ) -> ( A C_ B <-> ( C \ B ) C_ ( C \ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscon | |- ( A C_ B -> ( C \ B ) C_ ( C \ A ) ) |
|
| 2 | sscon | |- ( ( C \ B ) C_ ( C \ A ) -> ( C \ ( C \ A ) ) C_ ( C \ ( C \ B ) ) ) |
|
| 3 | dfss4 | |- ( A C_ C <-> ( C \ ( C \ A ) ) = A ) |
|
| 4 | 3 | biimpi | |- ( A C_ C -> ( C \ ( C \ A ) ) = A ) |
| 5 | 4 | adantr | |- ( ( A C_ C /\ B C_ C ) -> ( C \ ( C \ A ) ) = A ) |
| 6 | dfss4 | |- ( B C_ C <-> ( C \ ( C \ B ) ) = B ) |
|
| 7 | 6 | biimpi | |- ( B C_ C -> ( C \ ( C \ B ) ) = B ) |
| 8 | 7 | adantl | |- ( ( A C_ C /\ B C_ C ) -> ( C \ ( C \ B ) ) = B ) |
| 9 | 5 8 | sseq12d | |- ( ( A C_ C /\ B C_ C ) -> ( ( C \ ( C \ A ) ) C_ ( C \ ( C \ B ) ) <-> A C_ B ) ) |
| 10 | 2 9 | imbitrid | |- ( ( A C_ C /\ B C_ C ) -> ( ( C \ B ) C_ ( C \ A ) -> A C_ B ) ) |
| 11 | 1 10 | impbid2 | |- ( ( A C_ C /\ B C_ C ) -> ( A C_ B <-> ( C \ B ) C_ ( C \ A ) ) ) |