This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscoid | |- ( A C_ ( _I o. B ) <-> ( Rel A /\ A C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( _I o. B ) |
|
| 2 | relss | |- ( A C_ ( _I o. B ) -> ( Rel ( _I o. B ) -> Rel A ) ) |
|
| 3 | 1 2 | mpi | |- ( A C_ ( _I o. B ) -> Rel A ) |
| 4 | elrel | |- ( ( Rel A /\ x e. A ) -> E. y E. z x = <. y , z >. ) |
|
| 5 | vex | |- y e. _V |
|
| 6 | vex | |- z e. _V |
|
| 7 | 5 6 | brco | |- ( y ( _I o. B ) z <-> E. x ( y B x /\ x _I z ) ) |
| 8 | 6 | ideq | |- ( x _I z <-> x = z ) |
| 9 | 8 | anbi1ci | |- ( ( y B x /\ x _I z ) <-> ( x = z /\ y B x ) ) |
| 10 | 9 | exbii | |- ( E. x ( y B x /\ x _I z ) <-> E. x ( x = z /\ y B x ) ) |
| 11 | breq2 | |- ( x = z -> ( y B x <-> y B z ) ) |
|
| 12 | 11 | equsexvw | |- ( E. x ( x = z /\ y B x ) <-> y B z ) |
| 13 | 7 10 12 | 3bitri | |- ( y ( _I o. B ) z <-> y B z ) |
| 14 | 13 | a1i | |- ( x = <. y , z >. -> ( y ( _I o. B ) z <-> y B z ) ) |
| 15 | eleq1 | |- ( x = <. y , z >. -> ( x e. ( _I o. B ) <-> <. y , z >. e. ( _I o. B ) ) ) |
|
| 16 | df-br | |- ( y ( _I o. B ) z <-> <. y , z >. e. ( _I o. B ) ) |
|
| 17 | 15 16 | bitr4di | |- ( x = <. y , z >. -> ( x e. ( _I o. B ) <-> y ( _I o. B ) z ) ) |
| 18 | eleq1 | |- ( x = <. y , z >. -> ( x e. B <-> <. y , z >. e. B ) ) |
|
| 19 | df-br | |- ( y B z <-> <. y , z >. e. B ) |
|
| 20 | 18 19 | bitr4di | |- ( x = <. y , z >. -> ( x e. B <-> y B z ) ) |
| 21 | 14 17 20 | 3bitr4d | |- ( x = <. y , z >. -> ( x e. ( _I o. B ) <-> x e. B ) ) |
| 22 | 21 | exlimivv | |- ( E. y E. z x = <. y , z >. -> ( x e. ( _I o. B ) <-> x e. B ) ) |
| 23 | 4 22 | syl | |- ( ( Rel A /\ x e. A ) -> ( x e. ( _I o. B ) <-> x e. B ) ) |
| 24 | 23 | pm5.74da | |- ( Rel A -> ( ( x e. A -> x e. ( _I o. B ) ) <-> ( x e. A -> x e. B ) ) ) |
| 25 | 24 | albidv | |- ( Rel A -> ( A. x ( x e. A -> x e. ( _I o. B ) ) <-> A. x ( x e. A -> x e. B ) ) ) |
| 26 | df-ss | |- ( A C_ ( _I o. B ) <-> A. x ( x e. A -> x e. ( _I o. B ) ) ) |
|
| 27 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 28 | 25 26 27 | 3bitr4g | |- ( Rel A -> ( A C_ ( _I o. B ) <-> A C_ B ) ) |
| 29 | 3 28 | biadanii | |- ( A C_ ( _I o. B ) <-> ( Rel A /\ A C_ B ) ) |