This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for srglidm and srgridm . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 27-Dec-2014) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgidm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgidm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| srgidm.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | srgidmlem | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 1 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgidm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgidm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | srgidm.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | 4 | srgmgp | ⊢ ( 𝑅 ∈ SRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 6 | 4 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 7 | 4 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 | 4 3 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 9 | 6 7 8 | mndlrid | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 1 ) = 𝑋 ) ) |
| 10 | 5 9 | sylan | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 1 ) = 𝑋 ) ) |