This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for srglidm and srgridm . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 27-Dec-2014) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgidm.b | |- B = ( Base ` R ) |
|
| srgidm.t | |- .x. = ( .r ` R ) |
||
| srgidm.u | |- .1. = ( 1r ` R ) |
||
| Assertion | srgidmlem | |- ( ( R e. SRing /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgidm.b | |- B = ( Base ` R ) |
|
| 2 | srgidm.t | |- .x. = ( .r ` R ) |
|
| 3 | srgidm.u | |- .1. = ( 1r ` R ) |
|
| 4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 5 | 4 | srgmgp | |- ( R e. SRing -> ( mulGrp ` R ) e. Mnd ) |
| 6 | 4 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 7 | 4 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 8 | 4 3 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 9 | 6 7 8 | mndlrid | |- ( ( ( mulGrp ` R ) e. Mnd /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |
| 10 | 5 9 | sylan | |- ( ( R e. SRing /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |