This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for srgcom4 . This (formerly) part of the proof for ringcom is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgcom4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgcom4.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| Assertion | srgcom4lem | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcom4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgcom4.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 4 | 1 2 3 | srgdir | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) + ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 5 | 4 | ralrimivvva | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) + ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) + ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 7 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 8 | 1 7 | srgidcl | ⊢ ( 𝑅 ∈ SRing → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 10 | 1 3 7 | srglidm | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 11 | 10 | ralrimiva | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑥 ∈ 𝐵 ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 13 | simp2 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 1 2 | srgacl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 16 | 15 | ralrimivva | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 18 | 1 2 3 | srgdi | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) + ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 19 | 18 | ralrimivvva | ⊢ ( 𝑅 ∈ SRing → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) + ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) + ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 21 | simp3 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 22 | 6 9 12 13 17 20 21 | rglcom4d | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |