This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted commutativity of the addition in semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by AV, 1-Feb-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgcom4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srgcom4.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| Assertion | srgcom4 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑋 + 𝑌 ) ) + 𝑌 ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcom4.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srgcom4.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 3 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
| 5 | simp2 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simp3 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 | mndass | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( 𝑋 + ( 𝑋 + 𝑌 ) ) ) |
| 8 | 4 5 5 6 7 | syl13anc | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + 𝑌 ) = ( 𝑋 + ( 𝑋 + 𝑌 ) ) ) |
| 9 | 8 | eqcomd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑋 + 𝑌 ) ) = ( ( 𝑋 + 𝑋 ) + 𝑌 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑋 + 𝑌 ) ) + 𝑌 ) = ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) ) |
| 11 | 1 2 | srgacl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 𝑋 ) ∈ 𝐵 ) |
| 12 | 5 11 | syld3an3 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑋 ) ∈ 𝐵 ) |
| 13 | 1 2 | mndass | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( ( 𝑋 + 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 14 | 4 12 6 6 13 | syl13anc | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 + 𝑋 ) + 𝑌 ) + 𝑌 ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 15 | 1 2 | srgcom4lem | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| 16 | 1 2 | srgacl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 17 | 1 2 | mndass | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) ) |
| 18 | 4 5 6 16 17 | syl13anc | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) ) |
| 19 | 1 2 | mndass | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑌 ) = ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) |
| 20 | 19 | eqcomd | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑌 + ( 𝑋 + 𝑌 ) ) = ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) |
| 21 | 4 6 5 6 20 | syl13anc | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 𝑋 + 𝑌 ) ) = ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) = ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) ) |
| 23 | 1 2 | srgacl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 + 𝑋 ) ∈ 𝐵 ) |
| 24 | 23 | 3com23 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + 𝑋 ) ∈ 𝐵 ) |
| 25 | 1 2 | mndass | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 + 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) = ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) ) |
| 26 | 25 | eqcomd | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑌 + 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
| 27 | 4 5 24 6 26 | syl13anc | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( 𝑌 + 𝑋 ) + 𝑌 ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
| 28 | 22 27 | eqtrd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 + ( 𝑋 + 𝑌 ) ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
| 29 | 15 18 28 | 3eqtrd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |
| 30 | 10 14 29 | 3eqtrd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + ( 𝑋 + 𝑌 ) ) + 𝑌 ) = ( ( 𝑋 + ( 𝑌 + 𝑋 ) ) + 𝑌 ) ) |