This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted commutativity of the addition in a ring-like structure. This (formerly) part of the proof for ringcom depends on the closure of the addition, the (left and right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o2timesd.e | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| o2timesd.u | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | ||
| o2timesd.i | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) | ||
| o2timesd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rglcom4d.a | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | ||
| rglcom4d.d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | ||
| rglcom4d.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | rglcom4d | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o2timesd.e | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) | |
| 2 | o2timesd.u | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) | |
| 3 | o2timesd.i | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) | |
| 4 | o2timesd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | rglcom4d.a | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) | |
| 6 | rglcom4d.d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) | |
| 7 | rglcom4d.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | 2 2 | jca | ⊢ ( 𝜑 → ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 + 𝑦 ) = ( 1 + 𝑦 ) ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 1 + 𝑦 ) ∈ 𝐵 ) ) |
| 11 | oveq2 | ⊢ ( 𝑦 = 1 → ( 1 + 𝑦 ) = ( 1 + 1 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑦 = 1 → ( ( 1 + 𝑦 ) ∈ 𝐵 ↔ ( 1 + 1 ) ∈ 𝐵 ) ) |
| 13 | 10 12 | rspc2v | ⊢ ( ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 → ( 1 + 1 ) ∈ 𝐵 ) ) |
| 14 | 8 5 13 | sylc | ⊢ ( 𝜑 → ( 1 + 1 ) ∈ 𝐵 ) |
| 15 | 14 4 7 | 3jca | ⊢ ( 𝜑 → ( ( 1 + 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = ( 1 + 1 ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) ) | |
| 17 | oveq1 | ⊢ ( 𝑥 = ( 1 + 1 ) → ( 𝑥 · 𝑦 ) = ( ( 1 + 1 ) · 𝑦 ) ) | |
| 18 | oveq1 | ⊢ ( 𝑥 = ( 1 + 1 ) → ( 𝑥 · 𝑧 ) = ( ( 1 + 1 ) · 𝑧 ) ) | |
| 19 | 17 18 | oveq12d | ⊢ ( 𝑥 = ( 1 + 1 ) → ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) |
| 20 | 16 19 | eqeq12d | ⊢ ( 𝑥 = ( 1 + 1 ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 + 𝑧 ) = ( 𝑋 + 𝑧 ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑦 = 𝑋 → ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) = ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) ) |
| 23 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( ( 1 + 1 ) · 𝑦 ) = ( ( 1 + 1 ) · 𝑋 ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 1 + 1 ) · ( 𝑦 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑦 ) + ( ( 1 + 1 ) · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) ) ) |
| 26 | oveq2 | ⊢ ( 𝑧 = 𝑌 → ( 𝑋 + 𝑧 ) = ( 𝑋 + 𝑌 ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝑧 = 𝑌 → ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) = ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑧 = 𝑌 → ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑌 ) ) | |
| 29 | 28 | oveq2d | ⊢ ( 𝑧 = 𝑌 → ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) |
| 30 | 27 29 | eqeq12d | ⊢ ( 𝑧 = 𝑌 → ( ( ( 1 + 1 ) · ( 𝑋 + 𝑧 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) ) |
| 31 | 20 25 30 | rspc3v | ⊢ ( ( ( 1 + 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) ) |
| 32 | 15 6 31 | sylc | ⊢ ( 𝜑 → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) ) |
| 33 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 + 𝑦 ) = ( 𝑋 + 𝑦 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑦 ) ∈ 𝐵 ) ) |
| 35 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) ∈ 𝐵 ↔ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) |
| 37 | 34 36 | rspc2va | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 38 | 4 7 5 37 | syl21anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 39 | 2 2 38 | 3jca | ⊢ ( 𝜑 → ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) ) |
| 40 | 9 | oveq1d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 1 + 𝑦 ) · 𝑧 ) ) |
| 41 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 · 𝑧 ) = ( 1 · 𝑧 ) ) | |
| 42 | 41 | oveq1d | ⊢ ( 𝑥 = 1 → ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 43 | 40 42 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 44 | 11 | oveq1d | ⊢ ( 𝑦 = 1 → ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 + 1 ) · 𝑧 ) ) |
| 45 | oveq1 | ⊢ ( 𝑦 = 1 → ( 𝑦 · 𝑧 ) = ( 1 · 𝑧 ) ) | |
| 46 | 45 | oveq2d | ⊢ ( 𝑦 = 1 → ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) |
| 47 | 44 46 | eqeq12d | ⊢ ( 𝑦 = 1 → ( ( ( 1 + 𝑦 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ) ) |
| 48 | oveq2 | ⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) ) | |
| 49 | oveq2 | ⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( 1 · 𝑧 ) = ( 1 · ( 𝑋 + 𝑌 ) ) ) | |
| 50 | 49 49 | oveq12d | ⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) |
| 51 | 48 50 | eqeq12d | ⊢ ( 𝑧 = ( 𝑋 + 𝑌 ) → ( ( ( 1 + 1 ) · 𝑧 ) = ( ( 1 · 𝑧 ) + ( 1 · 𝑧 ) ) ↔ ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) ) |
| 52 | 43 47 51 | rspc3v | ⊢ ( ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) ) |
| 53 | 39 1 52 | sylc | ⊢ ( 𝜑 → ( ( 1 + 1 ) · ( 𝑋 + 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) |
| 54 | 32 53 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) = ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) ) |
| 55 | 1 2 3 4 | o2timesd | ⊢ ( 𝜑 → ( 𝑋 + 𝑋 ) = ( ( 1 + 1 ) · 𝑋 ) ) |
| 56 | 55 | eqcomd | ⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝑋 ) = ( 𝑋 + 𝑋 ) ) |
| 57 | 1 2 3 7 | o2timesd | ⊢ ( 𝜑 → ( 𝑌 + 𝑌 ) = ( ( 1 + 1 ) · 𝑌 ) ) |
| 58 | 57 | eqcomd | ⊢ ( 𝜑 → ( ( 1 + 1 ) · 𝑌 ) = ( 𝑌 + 𝑌 ) ) |
| 59 | 56 58 | oveq12d | ⊢ ( 𝜑 → ( ( ( 1 + 1 ) · 𝑋 ) + ( ( 1 + 1 ) · 𝑌 ) ) = ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) ) |
| 60 | oveq2 | ⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( 1 · 𝑥 ) = ( 1 · ( 𝑋 + 𝑌 ) ) ) | |
| 61 | id | ⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → 𝑥 = ( 𝑋 + 𝑌 ) ) | |
| 62 | 60 61 | eqeq12d | ⊢ ( 𝑥 = ( 𝑋 + 𝑌 ) → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) ) |
| 63 | 62 | rspcva | ⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 · 𝑥 ) = 𝑥 ) → ( 1 · ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
| 64 | 38 3 63 | syl2anc | ⊢ ( 𝜑 → ( 1 · ( 𝑋 + 𝑌 ) ) = ( 𝑋 + 𝑌 ) ) |
| 65 | 64 64 | oveq12d | ⊢ ( 𝜑 → ( ( 1 · ( 𝑋 + 𝑌 ) ) + ( 1 · ( 𝑋 + 𝑌 ) ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |
| 66 | 54 59 65 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑋 ) + ( 𝑌 + 𝑌 ) ) = ( ( 𝑋 + 𝑌 ) + ( 𝑋 + 𝑌 ) ) ) |