This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for srgcom4 . This (formerly) part of the proof for ringcom is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgcom4.b | ||
| srgcom4.p | |||
| Assertion | srgcom4lem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcom4.b | ||
| 2 | srgcom4.p | ||
| 3 | eqid | ||
| 4 | 1 2 3 | srgdir | |
| 5 | 4 | ralrimivvva | |
| 6 | 5 | 3ad2ant1 | |
| 7 | eqid | ||
| 8 | 1 7 | srgidcl | |
| 9 | 8 | 3ad2ant1 | |
| 10 | 1 3 7 | srglidm | |
| 11 | 10 | ralrimiva | |
| 12 | 11 | 3ad2ant1 | |
| 13 | simp2 | ||
| 14 | 1 2 | srgacl | |
| 15 | 14 | 3expb | |
| 16 | 15 | ralrimivva | |
| 17 | 16 | 3ad2ant1 | |
| 18 | 1 2 3 | srgdi | |
| 19 | 18 | ralrimivvva | |
| 20 | 19 | 3ad2ant1 | |
| 21 | simp3 | ||
| 22 | 6 9 12 13 17 20 21 | rglcom4d |