This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for srgcom4 . This (formerly) part of the proof for ringcom is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgcom4.b | |- B = ( Base ` R ) |
|
| srgcom4.p | |- .+ = ( +g ` R ) |
||
| Assertion | srgcom4lem | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> ( ( X .+ X ) .+ ( Y .+ Y ) ) = ( ( X .+ Y ) .+ ( X .+ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgcom4.b | |- B = ( Base ` R ) |
|
| 2 | srgcom4.p | |- .+ = ( +g ` R ) |
|
| 3 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 4 | 1 2 3 | srgdir | |- ( ( R e. SRing /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) .+ ( y ( .r ` R ) z ) ) ) |
| 5 | 4 | ralrimivvva | |- ( R e. SRing -> A. x e. B A. y e. B A. z e. B ( ( x .+ y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) .+ ( y ( .r ` R ) z ) ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> A. x e. B A. y e. B A. z e. B ( ( x .+ y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) .+ ( y ( .r ` R ) z ) ) ) |
| 7 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 8 | 1 7 | srgidcl | |- ( R e. SRing -> ( 1r ` R ) e. B ) |
| 9 | 8 | 3ad2ant1 | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> ( 1r ` R ) e. B ) |
| 10 | 1 3 7 | srglidm | |- ( ( R e. SRing /\ x e. B ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
| 11 | 10 | ralrimiva | |- ( R e. SRing -> A. x e. B ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
| 12 | 11 | 3ad2ant1 | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> A. x e. B ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
| 13 | simp2 | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 14 | 1 2 | srgacl | |- ( ( R e. SRing /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 15 | 14 | 3expb | |- ( ( R e. SRing /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 16 | 15 | ralrimivva | |- ( R e. SRing -> A. x e. B A. y e. B ( x .+ y ) e. B ) |
| 17 | 16 | 3ad2ant1 | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> A. x e. B A. y e. B ( x .+ y ) e. B ) |
| 18 | 1 2 3 | srgdi | |- ( ( R e. SRing /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x ( .r ` R ) ( y .+ z ) ) = ( ( x ( .r ` R ) y ) .+ ( x ( .r ` R ) z ) ) ) |
| 19 | 18 | ralrimivvva | |- ( R e. SRing -> A. x e. B A. y e. B A. z e. B ( x ( .r ` R ) ( y .+ z ) ) = ( ( x ( .r ` R ) y ) .+ ( x ( .r ` R ) z ) ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> A. x e. B A. y e. B A. z e. B ( x ( .r ` R ) ( y .+ z ) ) = ( ( x ( .r ` R ) y ) .+ ( x ( .r ` R ) z ) ) ) |
| 21 | simp3 | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 22 | 6 9 12 13 17 20 21 | rglcom4d | |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> ( ( X .+ X ) .+ ( Y .+ Y ) ) = ( ( X .+ Y ) .+ ( X .+ Y ) ) ) |