This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sraring.1 | ||
| sraring.2 | |||
| Assertion | sraring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraring.1 | ||
| 2 | sraring.2 | ||
| 3 | 2 | a1i | |
| 4 | 1 | a1i | |
| 5 | id | ||
| 6 | 5 2 | sseqtrdi | |
| 7 | 4 6 | srabase | |
| 8 | 2 7 | eqtrid | |
| 9 | 4 6 | sraaddg | |
| 10 | 9 | oveqdr | |
| 11 | 4 6 | sramulr | |
| 12 | 11 | oveqdr | |
| 13 | 3 8 10 12 | ringpropd | |
| 14 | 13 | biimpac |