This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof shortened by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sraassa.a | ||
| Assertion | sraassa |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraassa.a | ||
| 2 | eqid | ||
| 3 | 2 | subrgss | |
| 4 | 3 | adantl | |
| 5 | eqid | ||
| 6 | 2 5 | crngbascntr | |
| 7 | 6 | adantr | |
| 8 | 4 7 | sseqtrd | |
| 9 | crngring | ||
| 10 | 9 | adantr | |
| 11 | simpr | ||
| 12 | 1 5 10 11 | sraassab | |
| 13 | 8 12 | mpbird |