This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | squeeze0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 4 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 0 < 𝑥 ↔ 0 < 𝐴 ) ) | |
| 5 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 < 𝑥 ↔ 𝐴 < 𝐴 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 0 < 𝑥 → 𝐴 < 𝑥 ) ↔ ( 0 < 𝐴 → 𝐴 < 𝐴 ) ) ) |
| 7 | 6 | rspcv | ⊢ ( 𝐴 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → ( 0 < 𝐴 → 𝐴 < 𝐴 ) ) ) |
| 8 | ltnr | ⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴 ) | |
| 9 | 8 | pm2.21d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 𝐴 → 𝐴 = 0 ) ) |
| 10 | 9 | com12 | ⊢ ( 𝐴 < 𝐴 → ( 𝐴 ∈ ℝ → 𝐴 = 0 ) ) |
| 11 | 10 | imim2i | ⊢ ( ( 0 < 𝐴 → 𝐴 < 𝐴 ) → ( 0 < 𝐴 → ( 𝐴 ∈ ℝ → 𝐴 = 0 ) ) ) |
| 12 | 11 | com13 | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ( 0 < 𝐴 → 𝐴 < 𝐴 ) → 𝐴 = 0 ) ) ) |
| 13 | 7 12 | syl5d | ⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
| 14 | ax-1 | ⊢ ( 𝐴 = 0 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) | |
| 15 | 14 | eqcoms | ⊢ ( 0 = 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) |
| 16 | 15 | a1i | ⊢ ( 𝐴 ∈ ℝ → ( 0 = 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
| 17 | 13 16 | jaod | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
| 18 | 3 17 | sylbid | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
| 19 | 18 | 3imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 = 0 ) |