This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the second member of an ordered triple. (See ot1stg comment.) (Contributed by NM, 3-Apr-2015) (Revised by Mario Carneiro, 2-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ot2ndg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 2nd ‘ ( 1st ‘ 〈 𝐴 , 𝐵 , 𝐶 〉 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ot | ⊢ 〈 𝐴 , 𝐵 , 𝐶 〉 = 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 | |
| 2 | 1 | fveq2i | ⊢ ( 1st ‘ 〈 𝐴 , 𝐵 , 𝐶 〉 ) = ( 1st ‘ 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ) |
| 3 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
| 4 | op1stg | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( 1st ‘ 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ) = 〈 𝐴 , 𝐵 〉 ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐶 ∈ 𝑋 → ( 1st ‘ 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ) = 〈 𝐴 , 𝐵 〉 ) |
| 6 | 2 5 | eqtrid | ⊢ ( 𝐶 ∈ 𝑋 → ( 1st ‘ 〈 𝐴 , 𝐵 , 𝐶 〉 ) = 〈 𝐴 , 𝐵 〉 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝐶 ∈ 𝑋 → ( 2nd ‘ ( 1st ‘ 〈 𝐴 , 𝐵 , 𝐶 〉 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 8 | op2ndg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) | |
| 9 | 7 8 | sylan9eqr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( 2nd ‘ ( 1st ‘ 〈 𝐴 , 𝐵 , 𝐶 〉 ) ) = 𝐵 ) |
| 10 | 9 | 3impa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 2nd ‘ ( 1st ‘ 〈 𝐴 , 𝐵 , 𝐶 〉 ) ) = 𝐵 ) |