This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of spcimgf . (Contributed by Wolf Lammen, 28-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spcimgft | ⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) → ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 𝑦 = 𝐴 ) | |
| 2 | cbvexeqsetf | ⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑦 𝑦 = 𝐴 ) ) | |
| 3 | 1 2 | imbitrrid | ⊢ ( Ⅎ 𝑥 𝐴 → ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) ) |
| 4 | pm2.04 | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → ( 𝑥 = 𝐴 → 𝜓 ) ) ) | |
| 5 | 4 | al2imi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 6 | 19.23t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) | |
| 7 | 6 | biimpd | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 8 | 5 7 | sylan9r | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) → ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 9 | 8 | com23 | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| 10 | 3 9 | sylan9 | ⊢ ( ( Ⅎ 𝑥 𝐴 ∧ ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) ) → ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| 11 | 10 | anassrs | ⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) → ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |