This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcimgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| spcimgf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| spcimgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) | ||
| Assertion | spcimgf | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | spcimgf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | spcimgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) | |
| 4 | 2 1 | spcimgfi1 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| 5 | 4 3 | mpg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |