This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed version of spcimgf . (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by Wolf Lammen, 27-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcimgfi1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| spcimgfi1.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | spcimgfi1 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimgfi1.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | spcimgfi1.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | spcimgft | ⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) | |
| 4 | 3 | ex | ⊢ ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) ) |
| 5 | 2 1 4 | mp2an | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) ) |