This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The expression E. x x = A means " A is a set" even if A contains x as a bound variable. This lemma helps minimizing axiom or df-clab usage in some cases. Extracted from the proof of issetft . (Contributed by Wolf Lammen, 30-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cbvexeqsetf | ⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑦 𝑦 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnfc1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 | |
| 2 | nfv | ⊢ Ⅎ 𝑦 Ⅎ 𝑥 𝐴 | |
| 3 | nfvd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑦 ¬ 𝑥 = 𝐴 ) | |
| 4 | nfcvd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) | |
| 5 | id | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) | |
| 6 | 4 5 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 7 | 6 | nfnd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 ¬ 𝑦 = 𝐴 ) |
| 8 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) | |
| 9 | 8 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝐴 ↔ ¬ 𝑦 = 𝐴 ) ) |
| 10 | 9 | a1i | ⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝐴 ↔ ¬ 𝑦 = 𝐴 ) ) ) |
| 11 | 1 2 3 7 10 | cbv2w | ⊢ ( Ⅎ 𝑥 𝐴 → ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ∀ 𝑦 ¬ 𝑦 = 𝐴 ) ) |
| 12 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) | |
| 13 | alnex | ⊢ ( ∀ 𝑦 ¬ 𝑦 = 𝐴 ↔ ¬ ∃ 𝑦 𝑦 = 𝐴 ) | |
| 14 | 11 12 13 | 3bitr3g | ⊢ ( Ⅎ 𝑥 𝐴 → ( ¬ ∃ 𝑥 𝑥 = 𝐴 ↔ ¬ ∃ 𝑦 𝑦 = 𝐴 ) ) |
| 15 | 14 | con4bid | ⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑦 𝑦 = 𝐴 ) ) |