This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spansn.1 | ⊢ 𝐴 ∈ ℋ | |
| Assertion | spansni | ⊢ ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansn.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | snssi | ⊢ ( 𝐴 ∈ ℋ → { 𝐴 } ⊆ ℋ ) | |
| 3 | spanssoc | ⊢ ( { 𝐴 } ⊆ ℋ → ( span ‘ { 𝐴 } ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( span ‘ { 𝐴 } ) ⊆ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) |
| 5 | 1 | elexi | ⊢ 𝐴 ∈ V |
| 6 | 5 | snss | ⊢ ( 𝐴 ∈ 𝑦 ↔ { 𝐴 } ⊆ 𝑦 ) |
| 7 | shmulcl | ⊢ ( ( 𝑦 ∈ Sℋ ∧ 𝑧 ∈ ℂ ∧ 𝐴 ∈ 𝑦 ) → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) | |
| 8 | 7 | 3expia | ⊢ ( ( 𝑦 ∈ Sℋ ∧ 𝑧 ∈ ℂ ) → ( 𝐴 ∈ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → ( 𝐴 ∈ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) |
| 10 | 6 9 | biimtrrid | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → ( { 𝐴 } ⊆ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) |
| 11 | eleq1 | ⊢ ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) | |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ( ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ↔ ( { 𝐴 } ⊆ 𝑦 → ( 𝑧 ·ℎ 𝐴 ) ∈ 𝑦 ) ) ) |
| 13 | 10 12 | syl5ibrcom | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ Sℋ ) → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
| 14 | 13 | ralrimdva | ⊢ ( 𝑧 ∈ ℂ → ( 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
| 15 | 14 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) → ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 16 | 1 | h1de2ci | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ ∃ 𝑧 ∈ ℂ 𝑥 = ( 𝑧 ·ℎ 𝐴 ) ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 17 | elspani | ⊢ ( { 𝐴 } ⊆ ℋ → ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
| 19 | 1 2 18 | mp2b | ⊢ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ↔ ∀ 𝑦 ∈ Sℋ ( { 𝐴 } ⊆ 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 20 | 15 16 19 | 3imtr4i | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) → 𝑥 ∈ ( span ‘ { 𝐴 } ) ) |
| 21 | 20 | ssriv | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ⊆ ( span ‘ { 𝐴 } ) |
| 22 | 4 21 | eqssi | ⊢ ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) |