This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spansn.1 | |- A e. ~H |
|
| Assertion | spansni | |- ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansn.1 | |- A e. ~H |
|
| 2 | snssi | |- ( A e. ~H -> { A } C_ ~H ) |
|
| 3 | spanssoc | |- ( { A } C_ ~H -> ( span ` { A } ) C_ ( _|_ ` ( _|_ ` { A } ) ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( span ` { A } ) C_ ( _|_ ` ( _|_ ` { A } ) ) |
| 5 | 1 | elexi | |- A e. _V |
| 6 | 5 | snss | |- ( A e. y <-> { A } C_ y ) |
| 7 | shmulcl | |- ( ( y e. SH /\ z e. CC /\ A e. y ) -> ( z .h A ) e. y ) |
|
| 8 | 7 | 3expia | |- ( ( y e. SH /\ z e. CC ) -> ( A e. y -> ( z .h A ) e. y ) ) |
| 9 | 8 | ancoms | |- ( ( z e. CC /\ y e. SH ) -> ( A e. y -> ( z .h A ) e. y ) ) |
| 10 | 6 9 | biimtrrid | |- ( ( z e. CC /\ y e. SH ) -> ( { A } C_ y -> ( z .h A ) e. y ) ) |
| 11 | eleq1 | |- ( x = ( z .h A ) -> ( x e. y <-> ( z .h A ) e. y ) ) |
|
| 12 | 11 | imbi2d | |- ( x = ( z .h A ) -> ( ( { A } C_ y -> x e. y ) <-> ( { A } C_ y -> ( z .h A ) e. y ) ) ) |
| 13 | 10 12 | syl5ibrcom | |- ( ( z e. CC /\ y e. SH ) -> ( x = ( z .h A ) -> ( { A } C_ y -> x e. y ) ) ) |
| 14 | 13 | ralrimdva | |- ( z e. CC -> ( x = ( z .h A ) -> A. y e. SH ( { A } C_ y -> x e. y ) ) ) |
| 15 | 14 | rexlimiv | |- ( E. z e. CC x = ( z .h A ) -> A. y e. SH ( { A } C_ y -> x e. y ) ) |
| 16 | 1 | h1de2ci | |- ( x e. ( _|_ ` ( _|_ ` { A } ) ) <-> E. z e. CC x = ( z .h A ) ) |
| 17 | vex | |- x e. _V |
|
| 18 | 17 | elspani | |- ( { A } C_ ~H -> ( x e. ( span ` { A } ) <-> A. y e. SH ( { A } C_ y -> x e. y ) ) ) |
| 19 | 1 2 18 | mp2b | |- ( x e. ( span ` { A } ) <-> A. y e. SH ( { A } C_ y -> x e. y ) ) |
| 20 | 15 16 19 | 3imtr4i | |- ( x e. ( _|_ ` ( _|_ ` { A } ) ) -> x e. ( span ` { A } ) ) |
| 21 | 20 | ssriv | |- ( _|_ ` ( _|_ ` { A } ) ) C_ ( span ` { A } ) |
| 22 | 4 21 | eqssi | |- ( span ` { A } ) = ( _|_ ` ( _|_ ` { A } ) ) |