This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brrpssg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) | |
| 2 | relrpss | ⊢ Rel [⊊] | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 [⊊] 𝐵 → 𝐴 ∈ V ) |
| 4 | 1 3 | anim12i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 [⊊] 𝐵 ) → ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) |
| 5 | 1 | adantr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵 ) → 𝐵 ∈ V ) |
| 6 | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 7 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V ) → 𝐴 ∈ V ) | |
| 8 | 6 1 7 | syl2anr | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 ∈ V ) |
| 9 | 5 8 | jca | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) ) |
| 10 | psseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝑦 ) ) | |
| 11 | psseq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ⊊ 𝑦 ↔ 𝐴 ⊊ 𝐵 ) ) | |
| 12 | df-rpss | ⊢ [⊊] = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊊ 𝑦 } | |
| 13 | 10 11 12 | brabg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
| 15 | 4 9 14 | pm5.21nd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 [⊊] 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |