This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspsstri | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or32 | ⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ) | |
| 2 | sspss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 3 | sspss | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) | |
| 4 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 5 | 4 | orbi2i | ⊢ ( ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
| 7 | 2 6 | orbi12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
| 8 | orordir | ⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 10 | df-3or | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ) | |
| 11 | 1 9 10 | 3bitr4i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |