This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | somin1 | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) ( 𝑅 ∪ I ) 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( 𝐴 𝑅 𝐵 → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 2 | 1 | olcd | ⊢ ( 𝐴 𝑅 𝐵 → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ) |
| 3 | 2 | adantl | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ 𝐴 𝑅 𝐵 ) → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ) |
| 4 | sotric | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) | |
| 5 | orcom | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐵 𝑅 𝐴 ) ↔ ( 𝐵 𝑅 𝐴 ∨ 𝐴 = 𝐵 ) ) | |
| 6 | eqcom | ⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) | |
| 7 | 6 | orbi2i | ⊢ ( ( 𝐵 𝑅 𝐴 ∨ 𝐴 = 𝐵 ) ↔ ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 8 | 5 7 | bitri | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐵 𝑅 𝐴 ) ↔ ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 9 | 8 | notbii | ⊢ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 𝑅 𝐴 ) ↔ ¬ ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 10 | 4 9 | bitrdi | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 11 | 10 | con2bid | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 𝑅 𝐵 ) ) |
| 12 | 11 | biimpar | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ ¬ 𝐴 𝑅 𝐵 ) → ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 13 | iffalse | ⊢ ( ¬ 𝐴 𝑅 𝐵 → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 14 | breq1 | ⊢ ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐵 → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ↔ 𝐵 𝑅 𝐴 ) ) | |
| 15 | eqeq1 | ⊢ ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐵 → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ↔ 𝐵 = 𝐴 ) ) | |
| 16 | 14 15 | orbi12d | ⊢ ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐵 → ( ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ↔ ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 17 | 13 16 | syl | ⊢ ( ¬ 𝐴 𝑅 𝐵 → ( ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ↔ ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ ¬ 𝐴 𝑅 𝐵 ) → ( ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ↔ ( 𝐵 𝑅 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
| 19 | 12 18 | mpbird | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ ¬ 𝐴 𝑅 𝐵 ) → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ) |
| 20 | 3 19 | pm2.61dan | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ) |
| 21 | poleloe | ⊢ ( 𝐴 ∈ 𝑋 → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) ( 𝑅 ∪ I ) 𝐴 ↔ ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ) ) | |
| 22 | 21 | ad2antrl | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) ( 𝑅 ∪ I ) 𝐴 ↔ ( if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) 𝑅 𝐴 ∨ if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) ) ) |
| 23 | 20 22 | mpbird | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) ( 𝑅 ∪ I ) 𝐴 ) |