This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | somin1 | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> if ( A R B , A , B ) ( R u. _I ) A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | |- ( A R B -> if ( A R B , A , B ) = A ) |
|
| 2 | 1 | olcd | |- ( A R B -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
| 3 | 2 | adantl | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ A R B ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
| 4 | sotric | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( A = B \/ B R A ) ) ) |
|
| 5 | orcom | |- ( ( A = B \/ B R A ) <-> ( B R A \/ A = B ) ) |
|
| 6 | eqcom | |- ( A = B <-> B = A ) |
|
| 7 | 6 | orbi2i | |- ( ( B R A \/ A = B ) <-> ( B R A \/ B = A ) ) |
| 8 | 5 7 | bitri | |- ( ( A = B \/ B R A ) <-> ( B R A \/ B = A ) ) |
| 9 | 8 | notbii | |- ( -. ( A = B \/ B R A ) <-> -. ( B R A \/ B = A ) ) |
| 10 | 4 9 | bitrdi | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( A R B <-> -. ( B R A \/ B = A ) ) ) |
| 11 | 10 | con2bid | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( ( B R A \/ B = A ) <-> -. A R B ) ) |
| 12 | 11 | biimpar | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( B R A \/ B = A ) ) |
| 13 | iffalse | |- ( -. A R B -> if ( A R B , A , B ) = B ) |
|
| 14 | breq1 | |- ( if ( A R B , A , B ) = B -> ( if ( A R B , A , B ) R A <-> B R A ) ) |
|
| 15 | eqeq1 | |- ( if ( A R B , A , B ) = B -> ( if ( A R B , A , B ) = A <-> B = A ) ) |
|
| 16 | 14 15 | orbi12d | |- ( if ( A R B , A , B ) = B -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) |
| 17 | 13 16 | syl | |- ( -. A R B -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) |
| 18 | 17 | adantl | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) <-> ( B R A \/ B = A ) ) ) |
| 19 | 12 18 | mpbird | |- ( ( ( R Or X /\ ( A e. X /\ B e. X ) ) /\ -. A R B ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
| 20 | 3 19 | pm2.61dan | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) |
| 21 | poleloe | |- ( A e. X -> ( if ( A R B , A , B ) ( R u. _I ) A <-> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) ) |
|
| 22 | 21 | ad2antrl | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> ( if ( A R B , A , B ) ( R u. _I ) A <-> ( if ( A R B , A , B ) R A \/ if ( A R B , A , B ) = A ) ) ) |
| 23 | 20 22 | mpbird | |- ( ( R Or X /\ ( A e. X /\ B e. X ) ) -> if ( A R B , A , B ) ( R u. _I ) A ) |