This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | somincom | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | so2nr | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ¬ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) | |
| 2 | nan | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ¬ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐴 ) ) ↔ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ 𝐴 𝑅 𝐵 ) → ¬ 𝐵 𝑅 𝐴 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ 𝐴 𝑅 𝐵 ) → ¬ 𝐵 𝑅 𝐴 ) |
| 4 | 3 | iffalsed | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ 𝐴 𝑅 𝐵 ) → if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) = 𝐴 ) |
| 5 | 4 | eqcomd | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ 𝐴 𝑅 𝐵 ) → 𝐴 = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) |
| 6 | sotric | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) | |
| 7 | 6 | con2bid | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 𝑅 𝐴 ) ↔ ¬ 𝐴 𝑅 𝐵 ) ) |
| 8 | ifeq2 | ⊢ ( 𝐴 = 𝐵 → if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐵 ) ) | |
| 9 | ifid | ⊢ if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐵 ) = 𝐵 | |
| 10 | 8 9 | eqtr2di | ⊢ ( 𝐴 = 𝐵 → 𝐵 = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) |
| 11 | iftrue | ⊢ ( 𝐵 𝑅 𝐴 → if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) = 𝐵 ) | |
| 12 | 11 | eqcomd | ⊢ ( 𝐵 𝑅 𝐴 → 𝐵 = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) |
| 13 | 10 12 | jaoi | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐵 𝑅 𝐴 ) → 𝐵 = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) |
| 14 | 7 13 | biimtrrdi | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ¬ 𝐴 𝑅 𝐵 → 𝐵 = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) ) |
| 15 | 14 | imp | ⊢ ( ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ ¬ 𝐴 𝑅 𝐵 ) → 𝐵 = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) |
| 16 | 5 15 | ifeqda | ⊢ ( ( 𝑅 Or 𝑋 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → if ( 𝐴 𝑅 𝐵 , 𝐴 , 𝐵 ) = if ( 𝐵 𝑅 𝐴 , 𝐵 , 𝐴 ) ) |