This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sofld | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ 𝑅 ≠ ∅ ) → 𝐴 = ( dom 𝑅 ∪ ran 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | ⊢ Rel ( 𝐴 × 𝐴 ) | |
| 2 | relss | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ( Rel ( 𝐴 × 𝐴 ) → Rel 𝑅 ) ) | |
| 3 | 1 2 | mpi | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → Rel 𝑅 ) |
| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → Rel 𝑅 ) |
| 5 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 6 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑥 } ) | |
| 7 | undif1 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) | |
| 8 | 6 7 | sseqtrri | ⊢ 𝐴 ⊆ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) |
| 9 | simpll | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑅 Or 𝐴 ) | |
| 10 | dmss | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → dom 𝑅 ⊆ dom ( 𝐴 × 𝐴 ) ) | |
| 11 | dmxpid | ⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 | |
| 12 | 10 11 | sseqtrdi | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → dom 𝑅 ⊆ 𝐴 ) |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → dom 𝑅 ⊆ 𝐴 ) |
| 14 | 3 | ad2antlr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → Rel 𝑅 ) |
| 15 | releldm | ⊢ ( ( Rel 𝑅 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ dom 𝑅 ) | |
| 16 | 14 15 | sylancom | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ dom 𝑅 ) |
| 17 | 13 16 | sseldd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐴 ) |
| 18 | sossfld | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) | |
| 19 | 9 17 18 | syl2anc | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 20 | ssun1 | ⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) | |
| 21 | 20 16 | sselid | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 22 | 21 | snssd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → { 𝑥 } ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 23 | 19 22 | unssd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 24 | 8 23 | sstrid | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 25 | 24 | ex | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 26 | 5 25 | biimtrrid | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 27 | 26 | con3dimp | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ¬ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
| 28 | 27 | pm2.21d | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 〈 𝑥 , 𝑦 〉 ∈ ∅ ) ) |
| 29 | 4 28 | relssdv | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → 𝑅 ⊆ ∅ ) |
| 30 | ss0 | ⊢ ( 𝑅 ⊆ ∅ → 𝑅 = ∅ ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) ∧ ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) → 𝑅 = ∅ ) |
| 32 | 31 | ex | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( ¬ 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) → 𝑅 = ∅ ) ) |
| 33 | 32 | necon1ad | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ) → ( 𝑅 ≠ ∅ → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) ) |
| 34 | 33 | 3impia | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ 𝑅 ≠ ∅ ) → 𝐴 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) ) |
| 35 | rnss | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ran 𝑅 ⊆ ran ( 𝐴 × 𝐴 ) ) | |
| 36 | rnxpid | ⊢ ran ( 𝐴 × 𝐴 ) = 𝐴 | |
| 37 | 35 36 | sseqtrdi | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ran 𝑅 ⊆ 𝐴 ) |
| 38 | 12 37 | unssd | ⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐴 ) → ( dom 𝑅 ∪ ran 𝑅 ) ⊆ 𝐴 ) |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ 𝑅 ≠ ∅ ) → ( dom 𝑅 ∪ ran 𝑅 ) ⊆ 𝐴 ) |
| 40 | 34 39 | eqssd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑅 ⊆ ( 𝐴 × 𝐴 ) ∧ 𝑅 ≠ ∅ ) → 𝐴 = ( dom 𝑅 ∪ ran 𝑅 ) ) |