This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function into NN0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcdmnn0fsupp | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | ⊢ 0 ∈ V | |
| 2 | ffsuppbi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝐹 : 𝐼 ⟶ ℕ0 → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ( ℕ0 ∖ { 0 } ) ) ∈ Fin ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐹 : 𝐼 ⟶ ℕ0 → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ( ℕ0 ∖ { 0 } ) ) ∈ Fin ) ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ( ℕ0 ∖ { 0 } ) ) ∈ Fin ) ) |
| 5 | dfn2 | ⊢ ℕ = ( ℕ0 ∖ { 0 } ) | |
| 6 | 5 | imaeq2i | ⊢ ( ◡ 𝐹 “ ℕ ) = ( ◡ 𝐹 “ ( ℕ0 ∖ { 0 } ) ) |
| 7 | 6 | eleq1i | ⊢ ( ( ◡ 𝐹 “ ℕ ) ∈ Fin ↔ ( ◡ 𝐹 “ ( ℕ0 ∖ { 0 } ) ) ∈ Fin ) |
| 8 | 4 7 | bitr4di | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |