This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiprc | ⊢ Fin ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnex | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V | |
| 2 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 3 | eleq1 | ⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ∈ Fin ↔ { 𝑦 } ∈ Fin ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( 𝑥 = { 𝑦 } → 𝑥 ∈ Fin ) |
| 5 | 4 | exlimiv | ⊢ ( ∃ 𝑦 𝑥 = { 𝑦 } → 𝑥 ∈ Fin ) |
| 6 | 5 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ⊆ Fin |
| 7 | ssexg | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ⊆ Fin ∧ Fin ∈ V ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V ) | |
| 8 | 6 7 | mpan | ⊢ ( Fin ∈ V → { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V ) |
| 9 | 8 | con3i | ⊢ ( ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V → ¬ Fin ∈ V ) |
| 10 | df-nel | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V ) | |
| 11 | df-nel | ⊢ ( Fin ∉ V ↔ ¬ Fin ∈ V ) | |
| 12 | 9 10 11 | 3imtr4i | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V → Fin ∉ V ) |
| 13 | 1 12 | ax-mp | ⊢ Fin ∉ V |