This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snfbas | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | |- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
|
| 2 | 1 | 3adant2 | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. _V ) |
| 3 | simp2 | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A =/= (/) ) |
|
| 4 | snfil | |- ( ( A e. _V /\ A =/= (/) ) -> { A } e. ( Fil ` A ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( Fil ` A ) ) |
| 6 | filfbas | |- ( { A } e. ( Fil ` A ) -> { A } e. ( fBas ` A ) ) |
|
| 7 | 5 6 | syl | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` A ) ) |
| 8 | simp1 | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A C_ B ) |
|
| 9 | elpw2g | |- ( B e. V -> ( A e. ~P B <-> A C_ B ) ) |
|
| 10 | 9 | 3ad2ant3 | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> ( A e. ~P B <-> A C_ B ) ) |
| 11 | 8 10 | mpbird | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> A e. ~P B ) |
| 12 | 11 | snssd | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } C_ ~P B ) |
| 13 | simp3 | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> B e. V ) |
|
| 14 | fbasweak | |- ( ( { A } e. ( fBas ` A ) /\ { A } C_ ~P B /\ B e. V ) -> { A } e. ( fBas ` B ) ) |
|
| 15 | 7 12 13 14 | syl3anc | |- ( ( A C_ B /\ A =/= (/) /\ B e. V ) -> { A } e. ( fBas ` B ) ) |