This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function is an inverse to cos . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosacos | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arccos ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosval | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arccos ‘ 𝐴 ) ) = ( cos ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 3 | asincl | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | coshalfpim | ⊢ ( ( arcsin ‘ 𝐴 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( sin ‘ ( arcsin ‘ 𝐴 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( sin ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 6 | sinasin | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ) | |
| 7 | 2 5 6 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arccos ‘ 𝐴 ) ) = 𝐴 ) |