This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsvs | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 −ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shscl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) | |
| 2 | 1 | a1d | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ) ) |
| 3 | shsel1 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 4 | 3 | adantrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 5 | shsel2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐷 ∈ 𝐵 → 𝐷 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 6 | 5 | adantld | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐷 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 7 | 2 4 6 | 3jcad | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ∧ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
| 8 | shsubcl | ⊢ ( ( ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ ∧ 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 +ℋ 𝐵 ) ) → ( 𝐶 −ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) | |
| 9 | 7 8 | syl6 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐶 −ℎ 𝐷 ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |