This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsel1 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shel | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ ℋ ) | |
| 2 | ax-hvaddid | ⊢ ( 𝐶 ∈ ℋ → ( 𝐶 +ℎ 0ℎ ) = 𝐶 ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 +ℎ 0ℎ ) = 𝐶 ) |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 +ℎ 0ℎ ) = 𝐶 ) |
| 5 | sh0 | ⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℎ ∈ 𝐵 ) |
| 7 | shsva | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( ( 𝐶 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ) → ( 𝐶 +ℎ 0ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) | |
| 8 | 6 7 | mpan2d | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐴 → ( 𝐶 +ℎ 0ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 +ℎ 0ℎ ) ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 10 | 4 9 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 11 | 10 | ex | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ) ) |