This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector subtraction belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shsvs | |- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( C -h D ) e. ( A +H B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shscl | |- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) e. SH ) |
|
| 2 | 1 | a1d | |- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( A +H B ) e. SH ) ) |
| 3 | shsel1 | |- ( ( A e. SH /\ B e. SH ) -> ( C e. A -> C e. ( A +H B ) ) ) |
|
| 4 | 3 | adantrd | |- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> C e. ( A +H B ) ) ) |
| 5 | shsel2 | |- ( ( A e. SH /\ B e. SH ) -> ( D e. B -> D e. ( A +H B ) ) ) |
|
| 6 | 5 | adantld | |- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> D e. ( A +H B ) ) ) |
| 7 | 2 4 6 | 3jcad | |- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( ( A +H B ) e. SH /\ C e. ( A +H B ) /\ D e. ( A +H B ) ) ) ) |
| 8 | shsubcl | |- ( ( ( A +H B ) e. SH /\ C e. ( A +H B ) /\ D e. ( A +H B ) ) -> ( C -h D ) e. ( A +H B ) ) |
|
| 9 | 7 8 | syl6 | |- ( ( A e. SH /\ B e. SH ) -> ( ( C e. A /\ D e. B ) -> ( C -h D ) e. ( A +H B ) ) ) |