This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shlub | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ∈ Sℋ ) | |
| 3 | shss | ⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ ℋ ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ∈ Sℋ ) | |
| 6 | shss | ⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ⊆ ℋ ) |
| 8 | 4 7 | unssd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℋ ) |
| 9 | chss | ⊢ ( 𝐶 ∈ Cℋ → 𝐶 ⊆ ℋ ) | |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 ⊆ ℋ ) |
| 11 | occon2 | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ ∧ 𝐶 ⊆ ℋ ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) |
| 13 | 1 12 | biimtrid | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) |
| 14 | shjval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 15 | 2 5 14 | syl2anc | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 16 | ococ | ⊢ ( 𝐶 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) = 𝐶 ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) = 𝐶 ) |
| 18 | 17 | eqcomd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 = ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) |
| 19 | 15 18 | sseq12d | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐶 ) ) ) ) |
| 20 | 13 19 | sylibrd | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) |
| 21 | shub1 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 22 | 2 5 21 | syl2anc | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 23 | sstr | ⊢ ( ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) | |
| 24 | 22 23 | sylan | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 25 | shub2 | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 26 | 5 2 25 | syl2anc | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 27 | sstr | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) | |
| 28 | 26 27 | sylan | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → 𝐵 ⊆ 𝐶 ) |
| 29 | 24 28 | jca | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) |
| 30 | 29 | ex | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ) ) |
| 31 | 20 30 | impbid | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) |