This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shlub.1 | ⊢ 𝐴 ∈ Sℋ | |
| shlub.2 | ⊢ 𝐵 ∈ Sℋ | ||
| shlub.3 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | shlubi | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shlub.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shlub.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | shlub.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | shlub | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) ) | |
| 5 | 1 2 3 4 | mp3an | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ 𝐶 ) |