This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shlub | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
|
| 2 | simp1 | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> A e. SH ) |
|
| 3 | shss | |- ( A e. SH -> A C_ ~H ) |
|
| 4 | 2 3 | syl | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> A C_ ~H ) |
| 5 | simp2 | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> B e. SH ) |
|
| 6 | shss | |- ( B e. SH -> B C_ ~H ) |
|
| 7 | 5 6 | syl | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> B C_ ~H ) |
| 8 | 4 7 | unssd | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( A u. B ) C_ ~H ) |
| 9 | chss | |- ( C e. CH -> C C_ ~H ) |
|
| 10 | 9 | 3ad2ant3 | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> C C_ ~H ) |
| 11 | occon2 | |- ( ( ( A u. B ) C_ ~H /\ C C_ ~H ) -> ( ( A u. B ) C_ C -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A u. B ) C_ C -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
| 13 | 1 12 | biimtrid | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
| 14 | shjval | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
|
| 15 | 2 5 14 | syl2anc | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 16 | ococ | |- ( C e. CH -> ( _|_ ` ( _|_ ` C ) ) = C ) |
|
| 17 | 16 | 3ad2ant3 | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( _|_ ` ( _|_ ` C ) ) = C ) |
| 18 | 17 | eqcomd | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> C = ( _|_ ` ( _|_ ` C ) ) ) |
| 19 | 15 18 | sseq12d | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A vH B ) C_ C <-> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
| 20 | 13 19 | sylibrd | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) -> ( A vH B ) C_ C ) ) |
| 21 | shub1 | |- ( ( A e. SH /\ B e. SH ) -> A C_ ( A vH B ) ) |
|
| 22 | 2 5 21 | syl2anc | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> A C_ ( A vH B ) ) |
| 23 | sstr | |- ( ( A C_ ( A vH B ) /\ ( A vH B ) C_ C ) -> A C_ C ) |
|
| 24 | 22 23 | sylan | |- ( ( ( A e. SH /\ B e. SH /\ C e. CH ) /\ ( A vH B ) C_ C ) -> A C_ C ) |
| 25 | shub2 | |- ( ( B e. SH /\ A e. SH ) -> B C_ ( A vH B ) ) |
|
| 26 | 5 2 25 | syl2anc | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> B C_ ( A vH B ) ) |
| 27 | sstr | |- ( ( B C_ ( A vH B ) /\ ( A vH B ) C_ C ) -> B C_ C ) |
|
| 28 | 26 27 | sylan | |- ( ( ( A e. SH /\ B e. SH /\ C e. CH ) /\ ( A vH B ) C_ C ) -> B C_ C ) |
| 29 | 24 28 | jca | |- ( ( ( A e. SH /\ B e. SH /\ C e. CH ) /\ ( A vH B ) C_ C ) -> ( A C_ C /\ B C_ C ) ) |
| 30 | 29 | ex | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A vH B ) C_ C -> ( A C_ C /\ B C_ C ) ) ) |
| 31 | 20 30 | impbid | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) ) |