This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shlej1 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) | |
| 2 | unss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ Sℋ ) | |
| 4 | shss | ⊢ ( 𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ℋ ) |
| 6 | simpl3 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐶 ∈ Sℋ ) | |
| 7 | shss | ⊢ ( 𝐶 ∈ Sℋ → 𝐶 ⊆ ℋ ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐶 ⊆ ℋ ) |
| 9 | 5 8 | unssd | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∪ 𝐶 ) ⊆ ℋ ) |
| 10 | simpl2 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ Sℋ ) | |
| 11 | shss | ⊢ ( 𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ ) | |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ℋ ) |
| 13 | 12 8 | unssd | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∪ 𝐶 ) ⊆ ℋ ) |
| 14 | occon2 | ⊢ ( ( ( 𝐴 ∪ 𝐶 ) ⊆ ℋ ∧ ( 𝐵 ∪ 𝐶 ) ⊆ ℋ ) → ( ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) ) | |
| 15 | 9 13 14 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐶 ) ⊆ ( 𝐵 ∪ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) ) |
| 16 | 2 15 | syl5 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) ) |
| 17 | 1 16 | mpd | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) |
| 18 | shjval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ) | |
| 19 | 3 6 18 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐶 ) ) ) ) |
| 20 | shjval | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) | |
| 21 | 10 6 20 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∨ℋ 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵 ∪ 𝐶 ) ) ) ) |
| 22 | 17 19 21 | 3sstr4d | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ∧ 𝐶 ∈ Sℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |